Abstract
We consider the estimation of the marginal likelihood in Bayesian statistics, with primary emphasis on Gaussian graphical models, where the intractability of the marginal likelihood in high dimensions is a frequently researched problem. We propose a general algorithm that can be widely applied to a variety of problem settings and excels particularly when dealing with near log-concave posteriors. Our method builds upon a previously posited algorithm that uses MCMC samples to partition the parameter space and forms piecewise constant approximations over these partition sets as a means of estimating the normalizing constant. In this paper, we refine the aforementioned local approximations by taking advantage of the shape of the target distribution and leveraging an expectation propagation algorithm to approximate Gaussian integrals over rectangular polytopes. Our numerical experiments show the versatility and accuracy of the proposed estimator, even as the parameter space increases in dimension and becomes more complicated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.