Abstract

Metamaterials offer the potential of unprecedented refractive indices and evolution into metadevices for the manipulation of electromagnetic waves. However, the potential of the epsilon-near-zero (ENZ) concept has not been fully demonstrated in the terahertz waveband. Most conventional ENZ lenses have a uniform distribution of refractive indices in spite of their three-dimensional structure. Here, inspired by the ENZ concept, we demonstrate the two-dimensional distribution of a three-dimensional ENZ lens realized by circular openings of varying diameters on metal plates and apply it to a metal-slit array lens with gradient indices of 0<neff<1. The measurements of a fabricated metal-slit array lens with circular openings observe the focusing effect of a terahertz wave. We also apply the ENZ concept to the design of microlens arrays. The control of the gradient of the ENZ potentially offers a wide range of applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.