Abstract
The $$\epsilon$$-Depth ANT Explorer ($$\epsilon$$-DANTE) algorithm applied to a multiple objective optimization problem is presented in this paper. This method is a hybridization of the ant colony optimization algorithm with a depth search procedure, putting together an oriented/limited depth search. A particular design of the pheromone set of rules is suggested for these kinds of optimization problems, which are an adaptation of the single objective case. Six versions with incremental features are presented as an evolutive path, beginning in a single colony approach, where no depth search is applied, to the final $$\epsilon$$-DANTE. Versions are compared among themselves in a set of instances of the multiple objective Traveling Salesman Problem. Finally, our best version of $$\epsilon$$-DANTE is compared with several established heuristics in the field showing some promising results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.