Abstract

When genomic data are associated with gene expression data, the resulting expression quantitative trait loci (eQTL) will likely span multiple genes. eQTL prioritization techniques can be used to select the most likely causal gene affecting the expression of a target gene from a list of candidates. As an input, these techniques use physical interaction networks that often contain highly connected genes and unreliable or irrelevant interactions that can interfere with the prioritization process. We present EPSILON, an extendable framework for eQTL prioritization, which mitigates the effect of highly connected genes and unreliable interactions by constructing a local network before a network-based similarity measure is applied to select the true causal gene. We tested the new method on three eQTL datasets derived from yeast data using three different association techniques. A physical interaction network was constructed, and each eQTL in each dataset was prioritized using the EPSILON approach: first, a local network was constructed using a k-trials shortest path algorithm, followed by the calculation of a network-based similarity measure. Three similarity measures were evaluated: random walks, the Laplacian Exponential Diffusion kernel and the Regularized Commute-Time kernel. The aim was to predict knockout interactions from a yeast knockout compendium. EPSILON outperformed two reference prioritization methods, random assignment and shortest path prioritization. Next, we found that using a local network significantly increased prioritization performance in terms of predicted knockout pairs when compared with using exactly the same network similarity measures on the global network, with an average increase in prioritization performance of 8 percentage points (P < 10(-5)). The physical interaction network and the source code (Matlab/C++) of our implementation can be downloaded from http://bioinformatics.intec.ugent.be/epsilon. lieven.verbeke@intec.ugent.be, kamar@psb.ugent.be, jan.fostier@intec.ugent.be Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.