Abstract

The adsorption of the paramagnetic molecules of NO and NO2 by zeolites in the alkali and alkaline earth cationic forms has been studied by EPR and reflectance spectroscopic methods. The change in the EPR spectra of adsorbed nitric oxide with increase in the degree of covering of the surface of the alkali cationic form of the zeolites, and also the nature of the change in the spectra when oxygen is adsorbed on zeolites on which NO has previously been adsorbed, indicate the existence of two types of adsorption center. At low degrees of covering of the surface, on the order of 1018 g−1, as can be judged from the EPR spectra, the adsorbed NO molecule is strongly polarized and the unpaired electron is almost completely localized on the oxygen atom. At high degrees of covering, for an appreciable proportion of the NO molecules, the bond with the surface is weaker. In this case, the EPR spectra show a hyperfine structure (HFS) with a constant which changes with change in the cation in the order Li+ → Na+ → K+. The replacement of the singly charged Na+ by the doubly charged Ca2+ produces a marked change in the adsorption properties of the zeolite. The adsorption of NO on CaA leads not only to polarization of the adsorbed molecule but also to transfer of the electron from the nitrogen atom to the atoms of the adsorbent; this is recorded in the EPR spectrum in the form of an F-center. On further adsorption, the NO molecules are adsorbed both on the nitrogen atom and on the oxygen atom of the first molecule; thus, NO2 and N2O are formed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call