Abstract
High-T c superconductors are EPR silent but on a little deoxygenation of the high-T c materials and their constituents, they yield rich but complex spectra. Spectra of (1) CuO, (2) BaCuO2, (3) CaCuO2, (4) Y2Cu2O5, (5) La2CuO4, (6) La2−x M x CuO4 (M=Sr, Ba), (7) Y based-123, (8) Bi based-2201, 2212, 2223, (9) Tl based-2223 and (10) Hg based-1212, 1223 have been studied. One thing common to all these materials is the CuO2 plane which gets fragmented on deoxygenation and the inherent antiferromagnetic coupling is partially destroyed which results in the appearance of the spectra. The spectra recorded have been identified to be due to (1) Cu-monomer, (2) Cu-dimer, (3) Cu-tetramer, (4) Cu-octamer and (5) one signal at very low field which could not be identified because there was no structure in it and may be due to fragments higher than octamers. Very big fragments do not give any spectra because the original AF order probably remains intact in them. It is expected that when the fragments become magnetically isolated from the bulk, they produce EPR spectra. Most of the spectra have been analyzed and their spin-Hamiltonian parameters determined. The spectra of these species vary a little in terms of g-value and fine-structure splitting constant from sample to sample or even in the same sample and this may be attributed to some extra oxygen attachments retained with these species. Most frequently occurring species is the Cu-tetramer, (CuO)4. As (CuO)4 represents the unit cell of the all important two-dimensional CuO2 plane of the high-T c materials, its spectra have been argued to provide some clue to the mechanism of high-T c superconductivity. The tetramer (CuO)4 is a four one-half spin system and is essentially 16-fold degenerate by Heisenberg isotropic exchange, it is split into 6 components: one pentet, three triplets and two singlets. In superconductors the pentet appears to be the ground state and in the non-superconducting constituents the singlets seem to form the ground state as revealed by the temperature variation studies. In the case of La1.854Sr0.146CuO4 we have found the signature of quantum stripe formation. The high-T c superconductivity theories involving spin bag, antiferromagnetic spin fluctuations and magnons can be explained on the basis of Cu-tetramers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.