Abstract
The nitrosyl complex of ferric myoglobin is EPR-silent. Upon photolysis at low temperatures, the photoinduced intermediates trapped in the distal heme cavity exhibit new EPR spectra due to the interaction between the photodissociated NO ( S=1/2) and the ferric high spin heme ( S=5/2). In order to elucidate the effect of distal E7 (His64) and E11 (Val68) mutations upon the electronic structure of the metal center, its immediate environment, and its interaction with the photodissociated NO, EPR spectra of the photoproducts of the NO complexes of recombinant ferric Mb mutants were measured at 5 K. EPR spectra of the photoproducts were closely related to the size and/or the polarity of the distal pocket residues. The distal pocket of the E7 mutants seemed to be sterically crowded, even decreasing the side chain volume or changing its hydrophobicity by replacing amino acid at position 64. We have found that the mobility of the photodissociated NO molecule in the distal heme pocket was strongly governed by the nature of the amino acid residue at E11 position.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.