Abstract

Einstein–Podolsky–Rosen (EPR) steering gives evidence for the phenomenon called “spooky action at a distance” in quantum mechanics, and provides a useful resource for the implementation of quantum information tasks. In this paper, we consider a pair of ultracold polar molecules trapped in an external electric field as a promising quantum information carrier, and analyze the evolution behavior of EPR steering for the two coupled polar molecules in pendular states. Our results show that the steering of the two linear dipoles is remarkably reliant upon the Stark effect and dipole–dipole interaction. To be specific, the steerability degree is inversely associated with the intensity of the electric field while it is positively correlated with the coupling strength between the two polar molecules. Moreover, it is found that high ambient temperature can lead to a rapid loss of the steerable resource in thermal equilibrium. Further, we put forward an effective strategy to enhance the steerability using the technique of weak measurement reversal (WMR). By taking into account the influence of intrinsic decoherence on the steering dynamics, we found that robust EPR steering preservation can be realized for the initial state being in the Bell state . Our findings may shed some new light on molecular quantum information processing with pendular states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.