Abstract

The chemical oxidation of the cluster CpReFePt(μ3-C=CHPh)(CO)5(dppe) (Cp = η5-C5H5, dppe = η2- Ph2P(CH2)2PPh2) resulted in a radical cation [CpReFePt(μ3-C=CHPh)(CO)5(dppe)]+• that is sufficiently stable only at low temperature. An electronic structure of the radical cation was studied by EPR and following parameters were obtained by comparison of the experimental and model spectrum: gx = 2.070 gy = 2.0295 gz = 1.997; Ax(31P) = 17 Ay(31P) = 49 Az(31P) = 35 (Gs);Ax(195Pt) = 62 Ay(195Pt) = 45 Az(195Pt) = 105 (Gs). An unpaired electron is seen to be mainly concentrated on the iron atom (85-90%) and partially on the platinum atom (10-15%). Further transformation of the radical cation led to the formation of the binuclear complex Cp(CO)2RePt(μ-C=CHPh)(dppe) and the Fe-carbonyl fragment

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call