Abstract

The parent and p-nitrophenyl-substituted diradicals D-3a,b (triplets), tetraradicals T-3a,b (quintets), and hexaradicals H-3a,b (septets) were photochemically generated in matrix-isolated form (toluene, 77 K) by successive denitrogenation of the trisazoalkanes 3a,b and EPR spectrally characterized. In these high-spin polyradicals the spin-spin interaction within the localized spin-carrying 1,3-cyclopentanediyl diradical unit is much stronger than within the cross-conjugated ferromagnetic coupling unit. Accordingly, a change of the electronic properties in the cyclopentanediyl unit affects decisively the D value of the whole polyradical. Therefore, the spin-accepting p-nitro group reduces the D value of the tetra- and hexaradical in the same amount as that of the diradical. Thus, irrespective of the spin multiplicity, the substituent stabilizes electronically the triplet (D-3a,b), quintet (T-3a,b), and septet (H-3a,b) species with equal efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.