Abstract

EPR and Raman spectroscopy jointed with temperature-programmed reduction (TPR) and oxidation (TPO) were used to elucidate of the anionic redox processes occurring during the interaction of dioxygen, nitrous oxide and dihydrogen with nanoporous 12CaO·7Al2O3. The results showed that hydrogen and oxygen enter the mayenite cages following a dissociative pathway involving hydride, hydroxyl and peroxide intermediates, respectively. Generation and annihilation of the cage O2− and O− radicals upon oxidative and reductive treatments, confined to the near to the surface region, were found to be reversible. The key intermediates of this process were identified and a detailed mechanism of the surface and cage reactions was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.