Abstract

Epoxyeicosatrienoic acids (EETs) relax various smooth muscles by increasing outward K+ movement, but the molecular mode of action of EET regioisomers remains to be clarified. The effects of EETs were investigated on bovine airway smooth muscle tone and on reconstituted Ca2+-activated K+ (KCa) channels. 5,6-EET and 11, 12-EET induced dose-dependent relaxations of precontracted bronchial spirals. These effects were partly abolished by 10 nM iberiotoxin. Bilayer experiments have shown that 0.1-10 microM 11,12-EET produced up to fourfold increases in the open probability of KCa channels from the cis (extracellular) side by enhancing the mean open time constant and reducing the long closed time constant, without affecting the unitary conductance. EET-induced activations were blocked by 10 nM iberiotoxin. Addition of vehicles or other lipids as well as of GTP and guanosine 5'-O-(3-thiotriphosphate) in the absence of EET had no effect on channel activity. Thus EETs directly activate KCa channels from airway smooth muscle through an interaction with the extracellular face of the channel. We propose that EETs could represent candidate molecules as epithelium-derived hyperpolarizing factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call