Abstract

ABSTRACTInnovative epoxy‐titania nanocomposites were prepared starting from titania nanoparticles suspended in benzyl alcohol (BzOH) generated by nonhydrolytic sol–gel process from TiCl4. The obtained suspensions were mixed with an epoxy resin (bisphenol A diglycidyl ether, DGEBA) and the formulations were cured in the presence of ytterbium(III) trifluoromethanesulfonate as cationic initiator. The thermally activated cationic ring‐opening polymerization produced a three‐dimensional network in which the suspending medium BzOH was covalently linked to the epoxy network according to the “activated monomer” mechanism during the propagation step. The presence of titania nanoparticles resulted in a reinforcing and stiffening effect due to both their hydrodynamic effect and, most important, a significantly higher cross‐linking density of the composite material with respect to the unfilled epoxy resin. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40470.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.