Abstract

We designed and synthesized epoxy-encapsulated microparticles with core-shell structures via suspension polymerization to enable high-efficiency, room-temperature cold spray processing. The soft core of the microparticles was comprised of a thermoset resin, diglycidyl ether of bisphenol A (DGEBA), which was optionally blended with the thermoplastic, poly(butyl acrylate); the protective shell was formed using polyurea. The composition, morphology, and thermal behavior of the microparticles were investigated. An inverse relationship between deposition efficiency and particle size was demonstrated by varying the surfactant concentration that was used during particle synthesis. We also determined that the microparticles that had pure resin as the core had the lowest viscosity, exhibited a decrease in the critical impact velocity required for adhesion, had the best flowability, and yielded a dramatic increase in deposition efficiency (56%). We have demonstrated that our in-house synthesized particles can form homogeneous, smooth, and fully coalesced coatings using room-temperature cold spray.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.