Abstract

An epoxy/carbon nanotubes (CNTs) composite material with a low concentration of multiwalled CNTs (0.5 wt%) has been shown to be applicable in a wide temperature range (up to 160°C) as heating and temperature-sensing element. It can be prepared in any type of geometry allowing a simple application to all kinds of surfaces that have to be sensed and heated. The composite material itself and the electric contacts have demonstrated excellent stability even under extreme ambient conditions. The electrical resistivity of the composite has shown a temperature dependence consistent with the fluctuation-induced tunneling model. This model assumes that the electrical resistance of the nanotube network is dominated by the interconnections between the individual nanotubes rather than by the nanotube resistance itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.