Abstract
A novel approach to synthesize phytic acid (PA) functionalized graphene oxide (P-pFGO-7) treated by the photo-Fenton reaction has been designed, which has been used as an adsorbent for efficient capture of U(VI) from aqueous solution. The structure and morphology of P-pFGO-7 were characterized well. The adsorption property for P-pFGO-7 was comprehensively assessed by batch experiments, showing the high adsorption capacity (266.7 mg/g, at pH = 4.0, T = 298 K), fast adsorption kinetics (~10 min), good selectivity for U(VI) and Ln-An ions in various coexisting ions and excellent regeneration capacity. With the assistance of various characterization techniques and batch adsorption results, it is found that PA makes the most contribution to coordinate U(VI) heavily depending on the PO moiety. P-pFGO-7 could be regenerated by 0.1 mol/L Na2CO3 with ~95% desorption efficiency and reused well after five recycles. This present work provides a feasible route to modify graphene oxide and extend PA for potentially practical application in the removal of U(VI) from radioactive wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.