Abstract

Sandwich composites are three-dimensional (3D) composite structures that offer higher stiffness with overall low density. However, they suffer from low strength; thus, not suited for load bearing applications. In this work, an attempt is made to develop a high strength lightweight sandwich composite suited for load-bearing applications. A sandwich composite based on 3D integrally woven fabric with thickness 3 mm as the core and strengthened with additional 2x2 twill woven carbon fabric face-sheets is reported. The samples were manufactured by wet hand lay co-lamination process using Araldite® LY 1564 epoxy as the matrix polymer and with fiber fraction of 50% by weight. The number of additional carbon face-sheets over the core was varied from two to eight in steps of two. The composite samples were experimented under three-point bending and edgewise compression tests to determine the flexural and compressive strengths in both warp and weft directions. The weft direction samples yielded higher flexural and compressive strengths due to the continuous arrangement of the core pile yarn. The samples with six carbon face-sheets tested along the weft direction offered the highest specific strengths of ~409 kN m/kg and 259 kN m/kg in bending and compression tests. Similarly, the flexural strength was ~340 MPa, and compressive strength was ~217 MPa. A detailed fractography study revealed no core crushing or compression failure of the core during bending tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call