Abstract

Epoxy-based divinyl ester resins (DVER) were obtained by reacting diglycidyl ether of bisphenol A (DGEBA) with methacrylic acid (MA) and characterized by FTIR and 1H-NMR spectroscopies and gel permeation chromatography (GPC). The densities and viscosities of the DVER in styrene (S) solutions were measured at different temperatures, 25, 40, and 60°C and compositions, 3.4 to 100% by weight of styrene. Dynamic mechanical measurements (DMA) and differential scanning calorimetry (DSC) were used to determine the glass transition temperatures of the homopolymers and the DVER/S copolymers: 20, 40, 60, and 80% by weight of styrene. The values obtained are in the range limited by the homopolymers glass transition, 100°C for polystyrene and 173°C for the cured DVER. The data were well fitted if two contributions to the glass transition are taken into account: the “linear copolymer” contribution (Fox eq.) and the “crosslinking” contribution (Nielsen model). Uniaxial static compression tests were carried out to determine the modulus, yield stress, and ultimate stress in samples with different compositions. All the mentioned properties decrease with an increase in the styrene concentration in the final copolymer. It was found that the volumetric contraction during curing increases with styrene concentration. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1059–1066, 1997

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.