Abstract

The metal-catalyzed hydrogenolysis of epoxides to give alcohols has advanced rapidly in the past several years, with some catalysts selectively giving linear (anti-Markovnikov) products and other catalysts providing branched (Markovnikov) products. The currently known branched-selective catalyst systems require catalyst loadings of 1% or higher and typically require a strong base additive. We report herein that PNN- and PNP-ruthenium pincer complexes containing N–H functional groups are highly active for branched-selective hydrogenolysis of epoxides. When isopropyl alcohol is used as the solvent, excellent yields of the branched alcohol products are obtained without strongly basic additives, using catalyst loadings as low as 0.03%. Epoxides with a directly attached secondary carbon give a very high (>99:1) selectivity for the branched products. Aryl-substituted epoxides give branched:linear ratios ranging from 2.7 to 19.0. For aryl epoxides, a PNP-Ru catalyst showed a greater preference for the branched product than a PNN-Ru catalyst, and substrates with electron-rich aryl substituents showed a lower preference for the branched product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.