Abstract

To alleviate the global warming, various CO2 capture technologies have been developed, but most of them suffer from high energy cost, which is conflicted with their initial motivation. In order to achieve an economically efficient performance at an industrial scale, a novel porous millimeter-sized sorbent with resonable CO2 capacity is designed. The sorbent is prepared simply via suspension copolymerization of water-in-oil emulsion. Functionalized tetraethylenepentamine is encapsulated into the sorbent, which greatly maximizes amine efficiency, as the functionalized tetraethylenepentamine promotes CO2 desorption at a relatively low temperature, and maintains amine stability against oxidation and urea formation. At mean time, acrylate copolymerization and surface crosslinking ensure strong hydrophobicity of framework and surface as well as sufficient toughness against abrasion during fluidization operation. The CO2 working capacity of sorbent is 1.9 mmol∙g−1. A rapid adsorption/desorption kinetics and long-persistent stability have been obtained under complicated atmospheric environments and fully fluidized state. The energy penalty for sorbent regeneration is 2.15 MJ∙kg−1(CO2) in the presence of water, indicating a promising application prospect in CO2 capture from flue gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call