Abstract
The xanthophyll cycle apparently aids the photoprotection of photosystem II by regulating the nonradiative dissipation of excess absorbed light energy as heat. However, it is a controversial question whether the resulting nonphotochemical quenching is soley dependent on xanthophyll cycle activity or not. The xanthophyll cycle consists of two enzymic reactions, namely deepoxidation of the diepoxide violaxanthin to the epoxide-free zeaxanthin and the much slower, reverse process of epoxidation. While deepoxidation requires a transthylakoid pH gradient (ΔpH), epoxidation can proceed irrespective of a ΔpH. Herein, we compared the extent and kinetics of deepoxidation and epoxidation to the changes in fluorescence in the presence of a light-induced thylakoid ΔpH. We show that epoxidation reverses fluorescence quenching without affecting thylakoid ΔpH. These results suggest that epoxidase activity reverses quenching by removing deepoxidized xanthophyll cycle pigments from quenching complexes and converting them to a nonquenching form. The transmembrane organization of the xanthophyll cycle influences the localization and the availability of deepoxidized xanthophylls is to support nonphotochemical quenching capacity. The results confirm the view that rapidly reversible nonphotochemical quenching is dependent on deepoxidized xanthophyll.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.