Abstract
Epoxidation of ethylene with the reactive products formed during thermal gas-phase oxidation of n-butane has been carried out under flow conditions with the separation of the zones of generation of radicals and their interaction with ethylene. Butane is oxidized in the first section of a two-section reactor, and ethylene is fed to the second section. It has been found that increasing the residence time of a butane–oxygen mixture in the first section of the reactor from 7 to 13 s increases the ethylene oxide accumulation rate. A further increase in the contact time leads to a decrease in the rate. Similarly, increasing the C4H10/O2 ratio in the range of 0.05–0.25 leads to an increase in the rate of accumulation of ethylene oxide. A further increase in this ratio decreases the rate of epoxidation. It has also been found that the temperature dependences of the ethylene oxide accumulation rate in both sections of the reactor pass through a maximum. The obtained data give evidence for the occurrence of the ethylene epoxidation reaction initiated by the n-butane oxidation products under the conditions when ethylene itself is slightly oxidized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.