Abstract

A series of epothilone B and D analogues bearing isomeric quinoline or functionalized benzimidazole side chains has been prepared by chemical synthesis in a highly convergent manner. All analogues have been found to interact with the tubulin/microtubule system and to inhibit human cancer cell proliferation in vitro, albeit with different potencies (IC(50) values between 1 and 150 nM). The affinity of quinoline-based epothilone B and D analogues for stabilized microtubules clearly depends on the position of the N-atom in the quinoline system, while the induction of tubulin polymerization in vitro appears to be less sensitive to N-positioning. The potent inhibition of human cancer cell growth by epothilone analogues bearing functionalized benzimidazole side chains suggests that these systems might be conjugated with tumor-targeting moieties to form tumor-targeted prodrugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.