Abstract
Porcine epidemic diarrhea virus (PEDV) is a serious disease that poses a significant threat to the pig industry. This study focused on analyzing the Spike protein of PEDV, which harbors crucial antigenic determinants, in identifying dominant epitopes. Immunoinformatics tools were used to screen for B-cell, CD4+ and CD8+ predominance epitopes. These epitopes were then connected to the N-terminal of ferritin to form a self-assembled nanoparticle vaccine. Various physical and chemical properties of the candidate vaccine were analyzed, including secondary structure prediction, tertiary structure modeling, molecular docking, immune response simulation and computer cloning. The results demonstrated that the candidate vaccine was antigenic, soluble, stable, non-allergic, and formed a stable complex with the target receptor TLR-3. Immune simulation analysis showed that the candidate vaccine effectively stimulated both cellular and humoral reactions, leading to increased related cytokines production. Furthermore, efficient and stable expression of the candidate vaccine was achieved through reverse translation in the Escherichia coli K12 expression system following codon optimization and in silico cloning. The developed nanoparticle candidate vaccine in this study holds promise as an effective PEDV vaccine candidate, offering a new approach for the research, development and improvement of vaccines targeting porcine enteric diarrhea coronavirus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.