Abstract

Epitope mapping of antibodies (Abs) is crucial for understanding adaptive immunity, as well as studying the mode of action of therapeutic antibodies and vaccines. Especially insights into the binding of the entire polyclonal antibody population (pAb) raised upon vaccination would be of unique value to vaccine development. However, very few methods for epitope mapping can tolerate the complexity of a pAb sample. Here we show how hydrogen-deuterium exchange mass spectrometry (HDX-MS) can be used to map epitopes recognized by pAb samples. Our approach involves measuring the HDX of the antigen in absence or presence of varied amounts of pAbs, as well as dissociating additives. We apply the HDX-MS workflow to pAbs isolated from rabbit immunized with factor H-binding protein (fHbp), a Neisseria meningitidis vaccine antigen. We identify four immunogenic regions located on the N- and C-terminal region of fHbp and provide insights into the relative abundance and avidity of epitope binding Abs present in the sample. Overall, our results show that HDX-MS can provide a unique and relatively fast method for revealing the binding impact of the entire set of pAbs present in blood samples after vaccination. Such information provides a rare view into effective immunity and can guide the design of improved vaccines against viruses or bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.