Abstract

Ubiquitin, a conserved protein in eukaryotic cells, exists as a monomer or polyubiquitin chains known as isopeptide-linked polymers. These chains are attached to a substrate or other ubiquitin molecules through a covalent bond between the α-amino group of lysine in ubiquitin and glycine in the C-terminal of the subsequent ubiquitin unit. The choice of the specific lysine residue in ubiquitin for forming ubiquitin-ubiquitin chains determines its biochemical and biological function. A detailed chemical structure-function evaluation of the respective polyubiquitin chain is required. Interestingly, specific lysine linkage polyubiquitin chains become covalently bonded to many pathological inclusions seen in serious human disease states which appear to be resistant to normal degradation, so the interaction between polyubiquitin chains and ubiquitin antibodies is very useful. For example, the neurofibrillary tangles of Alzheimer's disease and the Lewy bodies seen in Parkinson's disease are heavily ubiquitinated and can be readily visualized using specific ubiquitin antibodies. This study utilized synthetic ubiquitin building block peptides that contained various lysine residues (K6, K11, K33, K48, and K63) linked to a Gly-Gly dipeptide, with the aim of exploring the recognition specificity of the Lys63-polyubiquitin antibody. The interaction studies between different ubiquitin building blocks and the specific Lys63-ubiquitin (K63-Ub) antibody were performed by affinity-mass spectrometry (Affinity-MS) and immunoblotting which enables direct protein identification from biological material with unprecedented selectivity. Affinity-MS and dot blot data proved the specific binding of the K63-Ub antibody to the ubiquitin peptides containing Lys6 or Lys63 residues. In epitope excision for mass spectrometric epitope identification, the ubiquitin building block with Lys63 residue bound to the immobilized K63-Ub antibody was proteolytically cleaved using pronase. The resulting epitope and non-epitope fractions were subjected to matrix-assisted laser desorption/ionization-time of flight analysis, revealing that the epitope is located within the sequence ubiquitin(60-66). Epitope extraction-MS consistently confirmed these findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.