Abstract

The Profitis Ilias gold deposit, located on the western part of Milos Island, Greece, is the first epithermal gold deposit discovered in the Pliocene–Pleistocene Aegean volcanic arc. Estimated ore reserves are 5 million tonnes grading 4.4 g/tonne Au and 43 g/tonne Ag. The deposit is closely associated with a horst and graben structure, and occurs in a series of steep interconnected crustiform-banded quartz veins up to 3 m wide, extending to depths of at least 300 m. The mineralisation occurs in three stages and is hosted by 3.5–2.5 Ma old silicified and sericitised rhyolitic lapilli-tuffs and ignimbrites. It consists of pyrite, galena, chalcopyrite, electrum and native gold. Additionally, adularia occurs with quartz mainly in veins. Homogenisation temperatures of primary liquid-rich inclusions vary from 145 to 399 °C for the ore stage, and 112 to 263 °C for the post-ore stage. Salinities range between 0.1 and 11.4 wt% NaCl equiv. and 0.93 to 8.5 wt% NaCl equiv. for the ore stage and the post-ore stage, respectively. Rare vapour-rich inclusions in ore stage quartz homogenise between 368 and 399 °C and estimates of eutectic melting (−25 to −38 °C) indicate the presence of Ca and Mg in the ore fluids. Sample elevation versus fluid inclusion Th–salinity relationships show (1) a high-salinity trend, where moderate-temperature (300–250 °C) and moderate-salinity brines (∼3 wt% NaCl equiv.) trend to high-salinity (up to 15 wt% NaCl equiv.) fluids with lower (∼25–50 °C) homogenisation temperatures, and (2) a high-Th trend where moderate-salinity and moderate-temperature brines (200–250 °C; 3 wt% NaCl equiv.) develop into low-salinity ( 350 °C) fluids. These trends are best explained by extreme boiling and vapourisation phenomena between 200 and 250 °C. The 430–450 m asl (metres above sea level) level marks the transition between a lower liquid-dominated segment of the system where only the steep high-salinity trend is seen, and an upper vapour-dominated segment where the high-Th trend or a combination of both are seen. There is a close spatial association between mineable gold grades and the upper segment of the system. Depth-to-boiling curves suggest that the paleo-surface was ∼200 m above the present summit of Profitis Ilias. Comparison of the mineralisation and fluid geochemistry at Profitis Ilias with that of the nearby modern geothermal system indicates that the processes of metal mineralisation have probably been continuous since the Late Pliocene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call