Abstract

The FOLFOX scheme, based on the association of 5-fluorouracil and oxaliplatin, is the most frequently indicated chemotherapy scheme for patients diagnosed with metastatic colorectal cancer. Nevertheless, development of chemoresistance is one of the major challenges associated with this disease. It has been reported that epithelial-mesenchymal transition (EMT) is implicated in microRNA-driven modulation of tumor cells response to 5-fluorouracil and oxaliplatin. Moreover, from pharmacogenomic research, it is known that overexpression of genes encoding dihydropyrimidine dehydrogenase (DPYD), thymidylate synthase (TYMS), methylenetetrahydrofolate reductase (MTHFR), the DNA repair enzymes ERCC1, ERCC2, and XRCC1, and the phase 2 enzyme GSTP1 impair the response to FOLFOX. It has been observed that EMT is associated with overexpression of DPYD, TYMS, ERCC1, and GSTP1. In this review, we investigated the role of miRNAs as EMT promotors in tumor cells, and its potential effect on the upregulation of DPYD, TYMS, MTHFR, ERCC1, ERCC2, XRCC1, and GSTP1 expression, which would lead to resistance of CRC tumor cells to 5-fluorouracil and oxaliplatin. This constitutes a potential mechanism of epigenetic regulation involved in late-onset of acquired resistance in mCRC patients under FOLFOX chemotherapy. Expression of these biomarker microRNAs could serve as tools for personalized medicine, and as potential therapeutic targets in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.