Abstract
The ameloblastoma is the most common and clinically significant odontogenic epithelial neoplasm known for its locally-invasive behaviour and high recurrence risk. Epithelial-to-mesenchymal transition (EMT) is a fundamental process whereby epithelial cells lose their epithelial characteristics and gain mesenchymal properties. EMT induction via transcription repression has been investigated in ameloblastoma. However, morphologically evident mesenchymal phenotypic transition remains ill-defined. To determine this, 24 unicystic (UA), 34 solid/multicystic (SA) and 18 recurrent ameloblastoma (RA) were immunohistochemically examined for three EMT-related mesenchymal markers, alpha smooth muscle actin (α-SMA), osteonectin and neuronal cadherin (N-cadherin). All three factors were heterogeneously detected in ameloblastoma samples (α-SMA, n=71/76, 93.4%; osteonectin, n=72/76, 94.7%; N-cadherin, n=24/76, 31.6%). In the tumoural parenchyma, immunoreactive cells were not morphologically distinct from their non-reactive cellular counterparts. Rather, α-SMA and osteonectin predominantly labelled the cytoplasm of central polyhedral > peripheral columnar/cuboidal tumour cells. N-cadherin demonstrated weak-to-moderate circumferential membranous staining in both neoplastic cell types and cytoplasmic expression in spindle-celled epithelium of desmoplastic amelobastoma. For all tumour subsets, α-SMA and osteonectin scored significantly higher in the stroma > parenchyma whilst α-SMA was overexpressed along the tumour invasive front > centre (p<0.05). Stromal N-cadherin scored higher in SA > UA and RA > UA (p<0.05). Other clinicopathological parameters showed no significant associations. Taken together, acquisition of mesenchymal traits without morphologically evident mesenchymal alteration suggests partial EMT in ameloblastoma. Stromal upregulation of these proteins in SA and RA implicates a role in local invasiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.