Abstract

Acquired resistance to protein kinase C (PKC) modulators may explain the failure of clinical trials in patients with cancer. Herein, we established a human colon cancer cell line resistant to PEP005, a drug that inhibits PKCalpha and activates PKCdelta. Colo205-R cells, selected by stepwise exposure to PEP005, were >300-fold more resistant to PEP005 than parental Colo205-S cells and were cross-resistant to phorbol 12-myristate 13-acetate, bryostatin, bistratene A, and staurosporine. No PKCalpha or PKCdelta mutation was detected in Colo205-S and Colo205-R cells. Changes in Colo205-R cells were reminiscent of the epithelial-to-mesenchymal transition (EMT) phenotype. Accordingly, Colo205-R cells were more invasive than Colo205-S in Matrigel assays and in mouse xenografts. We also found an increased mRNA expression of several EMT genes, such as those encoding for transforming growth factor-beta and vimentin, along with a decreased mRNA expression of genes involved in epithelial differentiation, such as CDH1 (E-cadherin), CLDN4 (claudin 4), S100A4, and MUC1, in Colo205-R compared with Colo205-S cells in vitro and in vivo. Interestingly, high expression of ET-1 was shown in Colo205-R cells and correlated with low sensitivity to PEP005 and staurosporine in a panel of 10 human cancer cell lines. Inhibition of the ET-1 receptor ETR-A with bosentan restored the antiproliferative effects of PEP005 in Colo205-R cells and decreased the invasive properties of this cell line. Exogenous exposure to ET-1 and silencing ET-1 expression using small interfering RNA modulated cell signaling in Colo205-S and Colo205-R. In summary, acquired resistance to PEP005 was associated with expression of EMT markers and activates the ET-1/ETR-A cell signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.