Abstract

Dedifferentiation of acini to duct-like cells occurs during the physiologic damage response in the pancreas, but this process can be co-opted by oncogenic Kras to drive carcinogenesis. Myeloid cells infiltrate the pancreas during the onset of pancreatic cancer, and promote carcinogenesis. Here, we show that the function of infiltrating myeloid cells is regulated by oncogenic Kras expressed in epithelial cells. In the presence of oncogenic Kras, myeloid cells promote acinar dedifferentiation and carcinogenesis. Upon inactivation of oncogenic Kras, myeloid cells promote re-differentiation of acinar cells, remodeling of the fibrotic stroma and tissue repair. Intriguingly, both aspects of myeloid cell activity depend, at least in part, on activation of EGFR/MAPK signaling, with different subsets of ligands and receptors in different target cells promoting carcinogenesis or repair, respectively. Thus, the cross-talk between epithelial cells and infiltrating myeloid cells determines the balance between tissue repair and carcinogenesis in the pancreas.

Highlights

  • The highly specialized epithelial cells in the adult pancreas (Slack, 1995) derive from common progenitors during embryogenesis (Cano et al, 2007; Gittes, 2009; Means and Leach, 2001)

  • The statistical difference was determined by Two-tailed unpaired t-tests. p

  • The statistical difference was determined by Two-tailed unpaired t-tests. (F) qRT-PCR for Arg1 expression in macrophages cultured with control IMDM media or iKras* cancer cell conditioned media (CM) in Figure 3 continued on page

Read more

Summary

Introduction

The highly specialized epithelial cells in the adult pancreas (Slack, 1995) derive from common progenitors during embryogenesis (Cano et al, 2007; Gittes, 2009; Means and Leach, 2001). The cells forming the exocrine pancreas, namely acinar, ductal and centroacinar cells, are believed to constitute the likely origin of pancreatic ductal adenocarcinoma, the most common type of pancreatic cancer and one of the deadliest human malignancies (for review, see (Puri and Hebrok, 2010; Rooman and Real, 2012; Stanger and Dor, 2006; Zorn and Wells, 2007). Engineered mice that express oncogenic Kras in the pancreas develop PanINs that progress to

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.