Abstract

In asthma, the airway epithelium has an impaired capacity to differentiate and plays a key role in the development of airway inflammation and remodeling through mediator release. The study objective was to investigate the release of (IL)-1 family members from primary airway epithelial-cells during differentiation, and how they affect primary airway fibroblast (PAF)-induced inflammation, extracellular matrix (ECM) production, and collagen I remodeling. The release of IL-1α/β and IL-33 during airway epithelial differentiation was assessed over 20-days using air-liquid interface cultures. The effect of IL-1 family cytokines on airway fibroblasts grown on collagen-coated well-plates and 3-dimensional collagen gels was assessed by measurement of inflammatory mediators and ECM proteins by ELISA and western blot, as well as collagen fiber formation using non-linear optical microscopy after 24-hours. The production of IL-1α is elevated in undifferentiated asthmatic-PAECs compared to controls. IL-1α/β induced fibroblast pro-inflammatory responses (CXCL8/IL-8, IL-6, TSLP, GM-CSF) and suppressed ECM-production (collagen, fibronectin, periostin) and the cell’s ability to repair and remodel fibrillar collagen I via LOX, LOXL1 and LOXL2 activity, as confirmed by inhibition with β-aminopropionitrile. These data support a role for epithelial-derived-IL-1 in the dysregulated repair of the asthmatic-EMTU and provides new insights into the contribution of airway fibroblasts in inflammation and airway remodeling in asthma.

Highlights

  • In asthma, the airway epithelium has an impaired capacity to differentiate and plays a key role in the development of airway inflammation and remodeling through mediator release

  • Like investigate the release of (IL)-1α, we found a similar pattern of increased expression of granulocyte monocyte-colony stimulating factor (GM-CSF), IL-8 and transforming growth factor (TGF)-β1 in Primary airway epithelial cells (PAECs)-air liquid interface (ALI) cultures at day 1 which decreased during differentiation and no changes in thymic stromal lymphopoietin (TSLP) expression

  • We show that IL-1α and its family member IL-1β are important for regulating airway fibroblast pro-inflammatory responses (CXCL8/IL-8, IL-6, TSLP, GM-CSF), extracellular matrix (ECM) production and their ability to repair and remodel fibrillar collagen I via Lysyl oxidase (LOX) activity

Read more

Summary

Introduction

The airway epithelium has an impaired capacity to differentiate and plays a key role in the development of airway inflammation and remodeling through mediator release. The study objective was to investigate the release of (IL)-1 family members from primary airway epithelial-cells during differentiation, and how they affect primary airway fibroblast (PAF)-induced inflammation, extracellular matrix (ECM) production, and collagen I remodeling. IL-1α/β induced fibroblast pro-inflammatory responses (CXCL8/IL-8, IL-6, TSLP, GM-CSF) and suppressed ECMproduction (collagen, fibronectin, periostin) and the cell’s ability to repair and remodel fibrillar collagen I via LOX, LOXL1 and LOXL2 activity, as confirmed by inhibition with β-aminopropionitrile These data support a role for epithelial-derived-IL-1 in the dysregulated repair of the asthmatic-EMTU and provides new insights into the contribution of airway fibroblasts in inflammation and airway remodeling in asthma. IL-1α/β can affect airway fibroblast-driven inflammation and collagen I formation, which has implications for airway remodeling in asthma

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call