Abstract

Airway remodeling, including subepithelial fibrosis, is a characteristic feature of asthma and likely contributes to the pathogenesis of airway hyperresponsiveness. We examined expression of genes related to airway wall fibrosis in a model of chronic allergen-induced airway dysfunction using laser capture microdissection and quantitative real-time PCR. BALB/c mice were sensitized and subjected to chronic ovalbumin exposure over a 12-wk period, after which they were rested and then harvested 2 and 8 wk after the last exposure. Chronic allergen-exposed mice had significantly increased indices of airway remodeling and airway hyperreactivity at all time points, although no difference in expression of fibrosis-related genes was found when mRNA extracted from whole lung was examined. In contrast, fibrosis-related gene expression was significantly upregulated in mRNA obtained from microdissected bronchial wall at 2 wk after chronic allergen exposure. In addition, when bronchial wall epithelium and smooth muscle were separately microdissected, gene expression of transforming growth factor-beta1 and plasminogen activating inhibitor-1 were significantly upregulated only in the airway epithelium. These data suggest that transforming growth factor-beta1 and other profibrotic mediators produced by airway wall, and specifically, airway epithelium, play an important role in the pathophysiology of airway remodeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.