Abstract

During the last week of gestation of the fetal rat, the epithelium of the colon is rapidly remodeled. At 16 days a primitive stratified epithelium surrounds a small central lumen. Over the next 3 days, the main lumen extends narrow clefts down to the basal cell layer and small secondary lumina appear within the stratified epithelium between these clefts. At 19 and 20 days, secondary lumina enlarge but remain discrete; an infusion of cationic ferritin into the main lumen does not enter secondary lumina. During the 2 days prior to birth (21–22), the secondary lumina join the main lumen as superficial cells are sloughed, and the epithelium becomes simple columnar. Freeze-fracture replicas indicate that luminal and nonluminal membrane domains of epithelial cell plasma membranes are separated by continuous tight junctions throughout the conversion process. Cytochemical analysis of tissue slices from 16- to 22-day fetal colon demonstrated the appearance and segregation of two phosphatases on apical and basolateral membrane domains during epithelial conversion. Cysteine-sensitive pH 9.0 (alkaline) phosphatase activity was first detected along the luminal membranes of cells bordering both primary and secondary lumina at 18 days gestation and increased to a maximum at 20–21 days; weaker activity was present on basolateral membranes. Phosphatase activity at pH 8.0 also appeared at 18 days and increased thereafter, but was localized primarily on nonluminal membranes. At pH 8.0, reaction product appeared on both inner and outer sides of the membrane, and was only partially abolished by omission of K + or addition of ouabain; thus the reaction may be only partially due to K +-dependent ATPase activity. Biochemical analysis of the cytochemical media confirmed the appearance of phosphatase activities at 18 days. Thus, plasma membrane phosphatase activities appear while the epithelium is still stratified, but are segregated to luminal and nonluminal membrane domains at the onset of activity. Segregation is maintained throughout the process of conversion of a simple columnar epithelium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call