Abstract

Enteropathogenic Escherichia coli (EPEC), a common cause of infant diarrhea, is associated with high risk of mortality in developing countries. The primary niche of infecting EPEC is the apical surface of intestinal epithelial cells. EPEC employs a type three secretion system (TTSS) to inject the host cells with dozens of effector proteins, which facilitate attachment to these cells and successful colonization. Here we show that EPEC elicit strong NF-κB activation in infected host cells. Furthermore, the data indicate that active, pore-forming TTSS per se is necessary and sufficient for this NF-κB activation, regardless of any specific effector or protein translocation. Importantly, upon infection with wild type EPEC this NF-κB activation is antagonized by anti-NF-κB effectors, including NleB, NleC and NleE. Accordingly, this NF-κB activation is evident only in cells infected with EPEC mutants deleted of nleB, nleC, and nleE. The TTSS-dependent NF-κB activation involves a unique pathway, which is independent of TLRs and Nod1/2 and converges with other pathways at the level of TAK1 activation. Taken together, our results imply that epithelial cells have the capacity to sense the EPEC TTSS and activate NF-κB in response. Notably, EPEC antagonizes this capacity by delivering anti-NF-κB effectors into the infected cells.

Highlights

  • Enteropathogenic and enterohemorrhagic E. coli (EPEC and EHEC, respectively) are important human pathogens that cause symptoms ranging from subclinical chronic colonization to acute, life threatening infections [1]

  • The intestine harbors a dense community of commensal bacteria that play a vital role in host health and homeostasis, but it is the port of entry for many pathogens

  • An important function of the intestinal epithelial cells is coordinating the immune response to microbial signals, ranging from tolerance towards beneficial species to a robust antipathogen immune response

Read more

Summary

Introduction

Enteropathogenic and enterohemorrhagic E. coli (EPEC and EHEC, respectively) are important human pathogens that cause symptoms ranging from subclinical chronic colonization to acute, life threatening infections [1]. EPEC and EHEC form typical attaching and effacing (AE) lesions on intestinal epithelial cells These lesions are characterized by intimate attachment to the epithelium and effacement of the brush border microvilli [2,3]. Throughout infection, these pathogens remain either in the intestinal lumen, or attached to the apical surface of the intestinal epithelia. The epithelium cells must distinguish commensal from pathogenic bacteria in order to maintain tolerance towards the beneficial commensal bacteria, while unleashing a defense response against pathogens. How this is achieved is only partially understood

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call