Abstract
Superficial wounds in the gastrointestinal tract rapidly reseal by coordinated epithelial cell migration facilitated by cytokines such as hepatocyte growth factor (HGF)/scatter factor released in the wound vicinity. However, the mechanisms by which HGF promotes physiological and pathophysiologic epithelial migration are incompletely understood. Using in vitro models of polarized T84 and Caco-2 intestinal epithelia, we report that HGF promoted epithelial spreading and RhoA GTPase activation in a time-dependent manner. Inducible expression of enhanced green fluorescent protein-tagged dominant-negative RhoA significantly attenuated HGF-induced spreading. HGF expanded a zone of partially flattened cells behind the wound edge containing basal F-actin fibers aligned in the direction of spreading. Concomitantly, plaques positive for the focal adhesion protein paxillin were enhanced. HGF induced an increase in the translation of paxillin and, to a lesser extent, beta1-integrin. This was independent of cell-matrix adhesion through beta1-integrin. Subcellular fractionation revealed increased cosedimentation of paxillin with plasma membrane-containing fractions following HGF stimulation, without corresponding enhancements in paxillin coassociation with beta1 integrin or actin. Tyrosine phosphorylation of paxillin was reduced by HGF and was sensitive to the Src kinase inhibitor PP2. With these taken together, we propose that HGF upregulates a free cytosolic pool of paxillin that is unaffiliated with either the cytoskeleton or focal cell-matrix contacts. Thus early spreading responses to HGF may partly relate to increased paxillin availability for incorporation into, and turnover within, dynamic cytoskeletal/membrane complexes whose rapid and transient adhesion to the matrix drives migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Gastrointestinal and Liver Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.