Abstract

Mesonephric and paramesonephric ducts develop in different ways in male and female fetuses. We have analyzed the changes in the expression of cytokeratin and vimentin type of intermediate filaments and desmosomal plaque proteins in progressing and regressing genital ducts of rat fetuses. The concomitant changes in the basement membranes were detected by laminin antibody. Epithelial cells of the indifferent (Day 15) male and female mesonephric and paramesonephric ducts contained faint vimentin positivity which, however, later disappeared. Indifferent mesonephric duct epithelium stained strongly for cytokeratin, whereas in the corresponding paramesonephric duct only a weak and spotty positivity was seen. Immunocytochemical localization of cytokeratin filaments and desmosomal plaque proteins correlated with the ultrastructural differences in the apical junctional complexes of the mesonephric and paramesonephric ducts. Regardless of the ongoing regression of the male paramesonephric duct, cytokeratin positivity increased in the disorganizing epithelium; the most weak and a granular immunoreaction was seen in the cells found in the intensively vimentin-positive periductal mesenchyme. In the regressing female mesonephric duct cytokeratin positivity was lost before the final dissolution of the basement membrane. Immunoblotting analysis of cytokeratin and vimentin polypeptides of the individual genital ducts were in agreement with the immunocytochemical results obtained in 15- and 16-day-old fetuses. The results suggest that the expression of vimentin type intermediate filaments is an indication of the mesothelial origin of the genital ducts. The increase in cytokeratin positivity of the regressing paramesonephric duct epithelium suggests that the degenerative changes are initiated by the mesenchyme. Cytokeratin-positive cells found in the periductal mesenchyme of the male paramesonephric duct may be epithelial cells transforming into mesenchyme. The results emphasize a close relationship between the changes of the intermediate filament system and extracellular matrix upon differentiation of the fetal genital ducts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call