Abstract

Three-dimensional (3D) control of dopant profiles in silicon is a critical requirement for fabricating atomically precise transistors. We demonstrate conductance modulation through an atomic scale 3 nm wide δ-doped silicon–phosphorus wire using a vertically separated epitaxial doped Si:P top-gate. We show that intrinsic crystalline silicon grown at low temperatures (∼250 °C) serves as an effective gate dielectric permitting us to achieve large gate ranges (∼2.6 V) with leakage currents below 1 pA. Combining scanning tunneling lithography for precise lateral confinement, with monolayer doping and low temperature epitaxial overgrowth for precise vertical confinement, we can realize multiple layers of nano-patterned dopants in a single crystal material. These results demonstrate the viability of highly doped, vertically separated epitaxial gates in an all-crystalline architecture with long-term implications for monolithic 3D silicon circuits and for the realization of atomically precise donor architectures for quantum computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.