Abstract

Self-organization of magnetic materials is an emerging and active field. An overview of the use of self-organization for magnetic purposes is given, with a view to illustrate aspects that cannot be covered by lithography. A first set of issues concerns the quantitative study of low-dimensional magnetic phenomena (1D and 0D). Such effects also occur in microstructured and lithographically-patterned materials but cannot be studied in these because of the complexity of such materials. This includes magnetic ordering, magnetic anisotropy and superparamagnetism. A second set of issues concerns the possibility to directly use self-organization in devices. Two sets of examples are given: first, how superparamagnetism can be fought by fabricating thick self-organized structures, and second, what new or improved functionalities can be expected from self-organized magnetic systems, like the tailoring of magnetic anisotropy or controlled dispersion of properties. To cite this article: O. Fruchart, C. R. Physique 6 (2005).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.