Abstract
Hydrogen is regarded as one of the most promising clean substitutes for fossil fuels toward a carbon-zero society. However, the safety management of the upcoming hydrogen energy infrastructure has not been fully prepared, in contrast to the well-established natural gas and gasoline systems. On the frontline is the guard post of hydrogen detectors, which need to be deployed on various structural surfaces and environmental conditions. Conventional hydrogen detectors are usually bulky and environmentally sensitive, limiting their flexible and conformal deployment to various locations, such as pipelines and valves. Herein, we demonstrate the successful synthesis of a palladium-modified epitaxial metal-organic framework (MOF) on single-layer graphene to fabricate a heterostructure material (Epi-MOF-Pd). Device based on the heterostructure demonstrates high sensitivity toward low- concentration H2 (155% resistance response to 1% H2 within 12 s, a theoretical detection limit of 3 ppm). The 25 nm epitaxial MOF acquires electrons from the Pd nanoparticles after the trace amount of H2 is chemically adsorbed and further relays the electrons to the highly conductive graphene. The Epi-MOF-Pd is both flexible and enduring, and maintains stable detection over 10 000 bending cycles. Through photolithography, device arrays with a density of 3000 units/cm2 are successfully fabricated. This versatile material provides a prospective avenue for the mass production of high-performance chemical-sensitive electronics, which could significantly improve the hydrogen safety management on demand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.