Abstract

Here, we report the realization of epitaxial Y3Fe5O12 (YIG) thin films with perpendicular magnetic anisotropy (PMA). The films are grown on the substituted gadolinium gallium garnet substrate (SGGG) by pulsed laser deposition. It was found that a thin buffer layer of Sm3Ga5O12 (SmGG) grown on top of SGGG can suppress the strain relaxation, which helps induce a large enough PMA to overcome the shape anisotropy in YIG thin films. The reciprocal space mappings analysis reveals that the in-plane strain relaxation is suppressed, while the out-of-plane strain relaxation exhibits a strong dependence on the film thickness. We found that the PMA can be achieved for both bilayer (YIG/SmGG) and tri-layer (SmGG/YIG/SmGG) structural films with YIG layer thicknesses up to 20 nm and 40 nm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.