Abstract

Epitaxial growth of thin vanadium sesquioxide (V2O3) films on c-plane sapphire (c-Al2O3) substrates was achieved with reactive magnetron sputtering under restricted oxygen flow. Even with a film thickness of approximately 12 nm, highly c-axis textured growth of corundum V2O3 was realized because of the smaller mismatch of V2O3 against corundum Al2O3. Post annealing in O2 atmosphere for as-grown V2O3 films caused phase transformation to oxidized crystalline phases. At a moderate annealing temperature of 450 °C, the V2O3 thin films transformed to VO2 films, which show a resistivity change of over three orders of magnitude. The X-ray photoelectron spectroscopy spectra for the annealed VO2 film showed a single charge state of V4+, indicating a homogeneous crystalline structure, in contrast to the inhomogeneous feature with mixed charge states of V in addition to V3+ for as-grown V2O3 film. This method is promising to prepare thin VO2 films with metal–insulator transition in productive reactive sputtering and to examine crystalline phase transformation mechanisms, including phase coexistence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call