Abstract

AbstractA facile synthesis of porous graphitic carbon nanofibers (CNFs) with encapsulated Co nanoparticles (denote as Co@CNFs) via electrospinning and subsequent annealing is reported. The in situ generated Co nanoparticles (NPs) promote the CNF graphitization under a low temperature of 700 °C, which simultaneously results in the porous structure of the Co@CNFs with a large surface area (416 m2 g−1). Furthermore, urchin‐like CoSe2 nanorods are epitaxially grown from the Co@CNFs via a facile hydrothermal selenation, in which the embedded Co NPs serve as directing seeds and sacrificial Co‐source, and CoSe2 nanorods are rooted into the CNFs (denote as CoSe2@CNFs). When used as anode materials for lithium ion batteries, the CoSe2@CNFs demonstrate superior lithium storage properties, delivering a high reversible capacity of 1405 mA h g−1 after 300 cycles at a current density of 200 mA g−1. The enhanced lithium storage performance can be attributed to the novel hybrid structure, namely, the porous and graphitic CNFs can not only facilitate the charge/ion transfer but also buffer the volume changes of the electrode during lithiation/delithiation processes. More importantly, a general strategy is provided to graphitize amorphous carbon materials via the use of in situ generated transition metal nanoparticles as catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call