Abstract

Two-dimensional (2D) heterostructures based on layered transition metal dichalcogenides (TMDs) have attracted increasing attention for the applications of the next-generation high-performance integrated electronics and optoelectronics. Although various TMD heterostructures have been successfully fabricated, epitaxial growth of such atomically thin metal-semiconductor heterostructures with a clean and sharp interface is still challenging. In addition, photodetectors based on such heterostructures have seldom been studied. Here, we report the synthesis of high-quality vertical NbS2/MoS2 metallic-semiconductor heterostructures. By using NbS2 as the contact electrodes, the field-effect mobility and current on-off ratio of MoS2 can be improved at least 6-fold and two orders of magnitude compared with the conventional Ti/Au contact, respectively. By using NbS2 as contact, the photodetector performance of MoS2 is much improved with higher responsivity and less response time. Such facile synthesis of atomically thin metal-semiconductor heterostructures by a simple chemical vapor deposition strategy and its effectiveness as ultrathin 2D metal contact open the door for the future application of electronics and optoelectronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.