Abstract
Monolithic integration of InP on a Si platform ideally facilitates on-chip light sources in silicon photonic applications. In addition to the well-developed hybrid bonding techniques, the direct epitaxy method is spawning as a more strategic and potentially cost-effective approach to monolithically integrate InP-based telecom lasers. To minimize the unwanted defects within the InP crystal, we explore multiple InAs/InP quantum dots as dislocation filters. The high quality InP buffer is thus obtained, and the dislocation filtering effects of the quantum dots are directly examined via both plan-view and cross-sectional transmission electron microscopy, along with room-temperature photoluminescence. The defect density on the InP surface was reduced to 3 × 108/cm2, providing an improved optical property of active photonic devices on Si substrates. This work offers a novel solution to advance large-scale integration of InP on Si, which is beneficial to silicon-based long-wavelength lasers in telecommunications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Applied Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.