Abstract
Van der Waals (vdW) semiconductors heterostructure based on transition metal dichalcogenides (TMDs) is a promising candidate for two-dimensional (2D) ultra-thin optoelectronic devices due to the strongly interlayer coupling and efficient carrier separation. However, the directly epitaxial growth of 2D TMDs vdW heterostructures with a clean interface and high photoresponsivity still remains a challenging. In this work, the epitaxial growth of bilayer MoS2/MoSe2 vdW heterostructure with atomic-layer clean interface is prepared via an iodine-assisted growth strategy. The electrical properties and optoelectronic characterization proves that the heterostructure device presents an enhanced photoresponsivity of 680 A/W, indicting the 21.25 times higher compared with pure MoS2, which benefited from the photogating effect formed by the localized electrons in this heterostructure. This study offers a well reference for the controlled growth of the TMDs vdW heterostructure, and the achieved heterostructure will prove promising applications in future integrated optoelectronic devices and systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.