Abstract
Although the FAPbI3 perovskite system exhibits an impressive optoelectronic characteristic and thermal stability because of its energetically unstable black phase at room temperature, it is considerably challenging to attain a controllable and oriented nucleation of α-FAPbI3 . To overcome this challenge, a 2D perovskite with a released inorganic octahedral distortion designed by weakening the hydrogen interactions between the organic interlayer and [PbI6 ]4- octahedron is presented in this study. A highly matched heterointerface can be formed between the (002) facet of the 2D structure and the (100) crystal plane of the cubic α-FAPbI3 , thereby lowering the crystallization energy and inducing a heterogeneous nucleation of α-FAPbI3 . This "epitaxial growth" mechanism results form the highly preferred crystallographic orientation of the (100) facets, improved crystal quality and film uniformity, substantially increased charge transporting characteristics, and suppressed nonradiative recombination losses. An impressive power conversion efficiency (PCE) of 25.4% (certified 25.2%) is achieved using target PSCs, which demonstrates outstanding ambient and operational stability. The feasibility of this strategy is proved for the scalable deposition of homogeneous and high-quality perovskite thin films by demonstrating the remarkably increased PCE of the large-area perovskite solar module, from 18.2% to 20.1%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.