Abstract

Epitaxial growth in strained asymmetric, dislocation-free, coherent, alloy films is explored. Linear-stability analysis is used to theoretically analyze the coupled instability arising jointly from the substrate-film lattice mismatch (morphological instability) and the spinodal decomposition mechanism. Both the static and growing films are considered. Role of various parameters in determining stability regions for a coherent growing alloy film is investigated. In addition to the usual parameters: lattice mismatch $ϵ$, solute-expansion coefficient $\ensuremath{\eta}$, growth velocity $V$, and growth temperature $T$, we consider the alloy asymmetry arising from its mean composition. The dependence of elastic moduli on composition fluctuations and the coupling between top surface and underlying bulk of the film also play important roles. The theory is applied to group III-V films such as GaAsN, InGaN, and InGaP and to group IV Si-Ge films at temperatures below the bare critical temperature ${T}_{c}$ for strain-free spinodal decomposition. The dependences of various material parameters on mean concentration and temperature lead to significant qualitative changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.