Abstract

Ba2IrO4 is a sister compound of the widely investigated Sr2IrO4 and has no IrO6 octahedral rotation nor net canted antiferromagnetic moment, thus it acts as a system more similar to the high-T c cuprate. In this work, we synthesize the Ba2IrO4 epitaxial films by reactive molecular beam epitaxy and study their crystalline structure and transport properties under biaxial compressive strain. High resolution scanning transmission electron microscopy and x-ray diffraction confirm the high quality of films with partial strain relaxation. Under compressive epitaxial strain, the Ba2IrO4 exhibits the strain-driven enhancement of the conductivity, consistent with the band gap narrowing and the stronger hybridization of Ir-t2g and O-2p orbitals predicted in the first-principles calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.