Abstract
Single-crystal Ge 1− x Sn x alloys ( x=0.025, 0.052, and 0.078) with diamond cubic structure have been grown on Si(0 0 1) substrates by molecular beam epitaxy (MBE), using high-quality Ge thin films as buffer layers. The Ge 1− x Sn x alloys are nearly fully strained and have high crystalline quality without Sn surface segregation, revealed by the measurements of high resolution X-ray diffraction (HRXRD), Rutherford backscattering spectra (RBS), and transmission electron microscopy (TEM). In addition, thermal stability investigations show that the alloy with Sn composition of about 2.5% can be stable at 500 °C, which may enable it for device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.